A frame is a rectangle on the screen that contains one or more Emacs windows. A frame initially contains a single main window (plus perhaps a minibuffer window), which you can subdivide vertically or horizontally into smaller windows.
When Emacs runs on a text-only terminal, it starts with one terminal frame. If you create additional ones, Emacs displays one and only one at any given time--on the terminal screen, of course.
When Emacs communicates directly with a supported window system, such as X Windows, it does not have a terminal frame; instead, it starts with a single window frame, but you can create more, and Emacs can display several such frames at once as is usual for window systems.
t
if object is a frame, and
nil
otherwise.
See section Emacs Display, for information about the related topic of controlling Emacs redisplay.
To create a new frame, call the function
make-frame
.
The argument is an alist specifying frame parameters. Any
parameters not mentioned in alist default according to
the value of the variable default-frame-alist
;
parameters not specified even there default from the standard X
resources or whatever is used instead on your system.
The set of possible parameters depends in principle on what kind of window system Emacs uses to display its frames. See section Window Frame Parameters, for documentation of individual parameters you can specify.
make-frame
before it actually creates the frame.
make-frame
after it creates the frame. Each function in
after-make-frame-hook
receives one argument, the frame
just created.
A single Emacs can talk to more than one X display. Initially,
Emacs uses just one display--the one chosen with the
DISPLAY
environment variable or with the
`--display' option (see section `Initial Options' in
The GNU Emacs Manual). To connect to another display,
use the command make-frame-on-display
or specify the
display
frame parameter when you create the frame.
Emacs treats each X server as a separate terminal, giving each one its own selected frame and its own minibuffer windows.
A few Lisp variables are terminal-local; that is, they
have a separate binding for each terminal. The binding in effect at
any time is the one for the terminal that the currently selected
frame belongs to. These variables include
default-minibuffer-frame
,
defining-kbd-macro
, last-kbd-macro
, and
system-key-alist
. They are always terminal-local, and
can never be buffer-local (see section Buffer-Local Variables) or
frame-local.
A single X server can handle more than one screen. A display name `host:server.screen' has three parts; the last part specifies the screen number for a given server. When you use two screens belonging to one server, Emacs knows by the similarity in their names that they share a single keyboard, and it treats them as a single terminal.
make-frame
(see section Creating Frames).
The optional argument xrm-string, if not
nil
, is a string of resource names and values, in the
same format used in the `.Xresources' file. The values you
specify override the resource values recorded in the X server
itself; they apply to all Emacs frames created on this display.
Here's an example of what this string might look like:
"*BorderWidth: 3\n*InternalBorder: 2\n"
See section X Resources.
A frame has many parameters that control its appearance and behavior. Just what parameters a frame has depends on what display mechanism it uses.
Frame parameters exist for the sake of window systems. A
terminal frame has a few parameters, mostly for compatibility's
sake; only the height
, width
,
name
, title
, buffer-list
and
buffer-predicate
parameters do something special.
These functions let you read and change the parameter values of a frame.
frame-parameters
returns an alist listing all the
parameters of frame and their values.
(parm . value)
, where
parm is a symbol naming a parameter. If you don't
mention a parameter in alist, its value doesn't
change.
You can specify the parameters for the initial startup frame by
setting initial-frame-alist
in your `.emacs'
file.
(parameter . value)
Emacs creates the initial frame before it reads your
`~/.emacs' file. After reading that file, Emacs checks
initial-frame-alist
, and applies the parameter
settings in the altered value to the already created initial
frame.
If these settings affect the frame geometry and appearance, you'll see the frame appear with the wrong ones and then change to the specified ones. If that bothers you, you can specify the same geometry and appearance with X resources; those do take affect before the frame is created. See section `X Resources' in The GNU Emacs Manual.
X resource settings typically apply to all frames. If you want
to specify some X resources solely for the sake of the initial
frame, and you don't want them to apply to subsequent frames,
here's how to achieve this. Specify parameters in
default-frame-alist
to override the X resources for
subsequent frames; then, to prevent these from affecting the
initial frame, specify the same parameters in
initial-frame-alist
with values that match the X
resources.
If these parameters specify a separate minibuffer-only frame
with (minibuffer . nil)
, and you have not created one,
Emacs creates one for you.
See also special-display-frame-alist
, in section Choosing a Window for Display.
If you use options that specify window appearance when you
invoke Emacs, they take effect by adding elements to
default-frame-alist
. One exception is
`-geometry', which adds the specified position to
initial-frame-alist
instead. See section `Command
Arguments' in The GNU Emacs Manual.
Just what parameters a frame has depends on what display
mechanism it uses. Here is a table of the parameters that have
special meanings in a window frame; of these, name
,
title
, height
, width
,
buffer-list
and buffer-predicate
provide
meaningful information in terminal frames.
display
"host:dpy.screen"
,
just like the DISPLAY
environment variable.
title
nil
title, it appears in the
window system's border for the frame, and also in the mode line of
windows in that frame if
mode-line-frame-identification
uses `%F'
(see section %-Constructs
in the Mode Line). This is normally the case when Emacs is not
using a window system, and can only display one frame at a time.
See section Frame Titles.
name
title
parameter is unspecified
or nil
. If you don't specify a name, Emacs sets the
frame name automatically (see section Frame Titles). If you specify the
frame name explicitly when you create the frame, the name is also
used (instead of the name of the Emacs executable) when looking up
X resources for the frame.
left
(+
pos)
which permits specifying a negative
pos value. A negative number -pos, or a list
of the form (- pos)
, actually specifies the
position of the right edge of the window with respect to the right
edge of the screen. A positive value of pos counts
toward the left. Reminder: if the parameter is a
negative integer -pos, then pos is positive.
Some window managers ignore program-specified positions. If you
want to be sure the position you specify is not ignored, specify a
non-nil
value for the user-position
parameter as well.
top
(+
pos)
which permits specifying a negative
pos value. A negative number -pos, or a list
of the form (- pos)
, actually specifies the
position of the bottom edge of the window with respect to the
bottom edge of the screen. A positive value of pos
counts toward the top. Reminder: if the parameter
is a negative integer -pos, then pos is
positive. Some window managers ignore program-specified positions.
If you want to be sure the position you specify is not ignored,
specify a non-nil
value for the
user-position
parameter as well.
icon-left
icon-top
user-position
left
and top
parameters, use this
parameter to say whether the specified position was user-specified
(explicitly requested in some way by a human user) or merely
program-specified (chosen by a program). A non-nil
value says the position was user-specified. Window managers
generally heed user-specified positions, and some heed
program-specified positions too. But many ignore program-specified
positions, placing the window in a default fashion or letting the
user place it with the mouse. Some window managers, including
twm
, let the user specify whether to obey
program-specified positions or ignore them. When you call
make-frame
, you should specify a non-nil
value for this parameter if the values of the left
and
top
parameters represent the user's stated preference;
otherwise, use nil
.
height
frame-pixel-height
; see section
Frame Size And Position.)
width
frame-pixel-width
; see section
Frame Size And Position.)
window-id
minibuffer
t
means yes, nil
means no,
only
means this frame is just a minibuffer. If the
value is a minibuffer window (in some other frame), the new frame
uses that minibuffer.
buffer-predicate
other-buffer
uses this predicate (from the selected
frame) to decide which buffers it should consider, if the predicate
is not nil
. It calls the predicate with one argument,
a buffer, once for each buffer; if the predicate returns a
non-nil
value, it considers that buffer.
buffer-list
font
auto-raise
nil
means yes).
auto-lower
nil
means yes).
vertical-scroll-bars
left
, right
, and nil
for no
scroll bars.
horizontal-scroll-bars
nil
means yes). (Horizontal scroll bars are not
currently implemented.)
scroll-bar-width
icon-type
nil
value specifies the default
bitmap icon (a picture of a gnu); nil
specifies a text
icon.
icon-name
nil
, the frame's title is
used.
foreground-color
foreground-color
frame parameter, you
should call frame-update-face-colors
to update faces
accordingly.
background-color
background-color
frame parameter, you should call
frame-update-face-colors
to update faces accordingly.
See section Functions for Working with
Faces.
background-mode
dark
or
light
, according to whether the background color is a
light one or a dark one.
mouse-color
cursor-color
border-color
display-type
color
,
grayscale
or mono
.
cursor-type
bar
, box
, and (bar .
width)
. The symbol box
specifies an
ordinary black box overlaying the character after point; that is
the default. The symbol bar
specifies a vertical bar
between characters as the cursor. (bar .
width)
specifies a bar width pixels
wide.
border-width
internal-border-width
unsplittable
nil
, this frame's window is never split
automatically.
visibility
nil
for invisible, t
for
visible, and icon
for iconified. See section Visibility of Frames.
menu-bar-lines
You can read or change the size and position of a frame using
the frame parameters left
, top
,
height
, and width
. Whatever geometry
parameters you don't specify are chosen by the window manager in
its usual fashion.
Here are some special features for working with sizes and positions:
Negative parameter values position the bottom edge of the window up from the bottom edge of the screen, or the right window edge to the left of the right edge of the screen. It would probably be better if the values were always counted from the left and top, so that negative arguments would position the frame partly off the top or left edge of the screen, but it seems inadvisable to change that now.
frame-height
and frame-width
.
When you are using a non-window terminal, the size of the frame is
normally the same as the size of the terminal screen.
To set the size based on values measured in pixels, use
frame-char-height
and frame-char-width
to
convert them to units of characters.
If pretend is non-nil
, then Emacs
displays lines lines of output in frame, but
does not change its value for the actual height of the frame. This
is only useful for a terminal frame. Using a smaller height than
the terminal actually implements may be useful to reproduce
behavior observed on a smaller screen, or if the terminal
malfunctions when using its whole screen. Setting the frame height
"for real" does not always work, because knowing the correct actual
size may be necessary for correct cursor positioning on a terminal
frame.
set-frame-height
.
The older functions
set-screen-height
and set-screen-width
were used to specify the height and width of the screen, in Emacs
versions that did not support multiple frames. They are
semi-obsolete, but still work; they apply to the selected
frame.
x-parse-geometry
converts a standard X window geometry string to an alist that you
can use as part of the argument to make-frame
. The alist describes which parameters were specified in
geom, and gives the values specified for them. Each
element looks like (parameter .
value)
. The possible parameter values
are left
, top
, width
, and
height
.
For the size parameters, the value must be an integer. The
position parameter names left
and top
are
not totally accurate, because some values indicate the position of
the right or bottom edges instead. These are the value
possibilities for the position parameters:
(+ position)
(- position)
Here is an example:
(x-parse-geometry "35x70+0-0") => ((height . 70) (width . 35) (top - 0) (left . 0))
Every frame has a name
parameter; this serves as
the default for the frame title which window systems typically
display at the top of the frame. You can specify a name explicitly
by setting the name
frame property.
Normally you don't specify the name explicitly, and Emacs
computes the frame name automatically based on a template stored in
the variable frame-title-format
. Emacs recomputes the
name each time the frame is redisplayed.
mode-line-format
. See section The Data Structure of the Mode
Line.
t
when there are
two or more frames (not counting minibuffer-only frames or
invisible frames). The default value of
frame-title-format
uses multiple-frames
so as to put the buffer name in the frame title only when there is
more than one frame.
Frames remain potentially visible until you explicitly delete them. A deleted frame cannot appear on the screen, but continues to exist as a Lisp object until there are no references to it. There is no way to cancel the deletion of a frame aside from restoring a saved frame configuration (see section Frame Configurations); this is similar to the way windows behave.
frame-live-p
returns non-nil
if the frame
frame has not been deleted.
Some window managers provide a command to delete a window. These
work by sending a special message to the program that operates the
window. When Emacs gets one of these commands, it generates a
delete-frame
event, whose normal definition is a
command that calls the function delete-frame
. See
section Miscellaneous Window System
Events.
frame-list
returns a list of all the frames that have
not been deleted. It is analogous to buffer-list
for
buffers. The list that you get is newly created, so modifying the
list doesn't have any effect on the internals of Emacs.
next-frame
lets you cycle conveniently through all the
frames from an arbitrary starting point. It returns the "next"
frame after frame in the cycle. If frame is
omitted or nil
, it defaults to the selected frame.
The second argument, minibuf, says which frames to consider:
nil
visible
next-frame
, but cycles through all frames in the
opposite direction.
See also next-window
and
previous-window
, in section Cyclic Ordering of Windows.
Each window is part of one and only one frame; you can get the
frame with window-frame
.
All the non-minibuffer windows in a frame are arranged in a cyclic order. The order runs from the frame's top window, which is at the upper left corner, down and to the right, until it reaches the window at the lower right corner (always the minibuffer window, if the frame has one), and then it moves back to the top. See section Cyclic Ordering of Windows.
At any time, exactly one window on any frame is selected
within the frame. The significance of this designation is that
selecting the frame also selects this window. You can get the
frame's current selected window with
frame-selected-window
.
Conversely, selecting a window for Emacs with
select-window
also makes that window selected within
its frame. See section Selecting
Windows.
Another function that (usually) returns one of the windows in a
given frame is minibuffer-window
. See section Minibuffer Miscellany.
Normally, each frame has its own minibuffer window at the
bottom, which is used whenever that frame is selected. If the frame
has a minibuffer, you can get it with
minibuffer-window
(see section Minibuffer Miscellany).
However, you can also create a frame with no minibuffer. Such a
frame must use the minibuffer window of some other frame. When you
create the frame, you can specify explicitly the minibuffer window
to use (in some other frame). If you don't, then the minibuffer is
found in the frame which is the value of the variable
default-minibuffer-frame
. Its value should be a frame
that does have a minibuffer.
If you use a minibuffer-only frame, you might want that frame to
raise when you enter the minibuffer. If so, set the variable
minibuffer-auto-raise
to t
. See section
Raising and Lowering Frames.
At any time, one frame in Emacs is the selected frame. The selected window always resides on the selected frame.
Some window systems and window managers direct keyboard input to the window object that the mouse is in; others require explicit clicks or commands to shift the focus to various window objects. Either way, Emacs automatically keeps track of which frame has the focus.
Lisp programs can also switch frames "temporarily" by calling
the function select-frame
. This does not alter the
window system's concept of focus; rather, it escapes from the
window manager's control until that control is somehow
reasserted.
When using a text-only terminal, only the selected terminal
frame is actually displayed on the terminal.
switch-frame
is the only way to switch frames, and the
change lasts until overridden by a subsequent call to
switch-frame
. Each terminal screen except for the
initial one has a number, and the number of the selected frame
appears in the mode line before the buffer name (see section Variables Used in the Mode Line).
Emacs cooperates with the window system by arranging to select
frames as the server and window manager request. It does so by
generating a special kind of input event, called a focus
event, when appropriate. The command loop handles a focus event by
calling handle-switch-frame
. See section Focus Events.
Focus events normally do their job by invoking this command. Don't call it for any other reason.
last-event-frame
will be
focus-frame. Also, switch-frame events specifying
frame will instead select focus-frame. If focus-frame is nil
, that cancels any
existing redirection for frame, which therefore once
again receives its own events.
One use of focus redirection is for frames that don't have minibuffers. These frames use minibuffers on other frames. Activating a minibuffer on another frame redirects focus to that frame. This puts the focus on the minibuffer's frame, where it belongs, even though the mouse remains in the frame that activated the minibuffer.
Selecting a frame can also change focus redirections. Selecting
frame bar
, when foo
had been selected,
changes any redirections pointing to foo
so that they
point to bar
instead. This allows focus redirection to
work properly when the user switches from one frame to another
using select-window
.
This means that a frame whose focus is redirected to itself is
treated differently from a frame whose focus is not redirected.
select-frame
affects the former but not the
latter.
The redirection lasts until redirect-frame-focus
is
called to change it.
nil
says that it does. When this is so, the
command other-frame
moves the mouse to a position
consistent with the new selected frame.
A window frame may be visible, invisible, or iconified. If it is visible, you can see its contents. If it is iconified, the frame's contents do not appear on the screen, but an icon does. If the frame is invisible, it doesn't show on the screen, not even as an icon.
Visibility is meaningless for terminal frames, since only the selected one is actually displayed in any case.
t
if
frame is visible, nil
if it is invisible,
and icon
if it is iconified.
The visibility status of a frame is also available as a frame parameter. You can read or change it as such. See section Window Frame Parameters.
The user can iconify and deiconify frames with the window manager. This happens below the level at which Emacs can exert any control, but Emacs does provide events that you can use to keep track of such changes. See section Miscellaneous Window System Events.
Most window systems use a desktop metaphor. Part of this metaphor is the idea that windows are stacked in a notional third dimension perpendicular to the screen surface, and thus ordered from "highest" to "lowest". Where two windows overlap, the one higher up covers the one underneath. Even a window at the bottom of the stack can be seen if no other window overlaps it.
A window's place in this ordering is not fixed; in fact, users tend to change the order frequently. Raising a window means moving it "up", to the top of the stack. Lowering a window means moving it to the bottom of the stack. This motion is in the notional third dimension only, and does not change the position of the window on the screen.
You can raise and lower Emacs frame Windows with these functions:
nil
, activation of the minibuffer raises the frame
that the minibuffer window is in.
You can also enable auto-raise (raising automatically when a frame is selected) or auto-lower (lowering automatically when it is deselected) for any frame using frame parameters. See section Window Frame Parameters.
A frame configuration records the current arrangement of frames, all their properties, and the window configuration of each one. (See section Window Configurations.)
Sometimes it is useful to track the mouse, which means to display something to indicate where the mouse is and move the indicator as the mouse moves. For efficient mouse tracking, you need a way to wait until the mouse actually moves.
The convenient way to track the mouse is to ask for events to represent mouse motion. Then you can wait for motion by waiting for an event. In addition, you can easily handle any other sorts of events that may occur. That is useful, because normally you don't want to track the mouse forever--only until some other event, such as the release of a button.
read-event
to read
the motion events and modify the display accordingly. See section
Motion Events, for the format of
mouse motion events. The value of track-mouse
is that of the last form
in body. You should design body to return
when it sees the up-event that indicates the release of the button,
or whatever kind of event means it is time to stop tracking.
The usual purpose of tracking mouse motion is to indicate on the screen the consequences of pushing or releasing a button at the current position.
In many cases, you can avoid the need to track the mouse by
using the mouse-face
text property (see section Properties with Special Meanings).
That works at a much lower level and runs more smoothly than
Lisp-level mouse tracking.
The functions mouse-position
and
set-mouse-position
give access to the current position
of the mouse.
(frame x . y)
, where
x and y are integers giving the position in
characters relative to the top left corner of the inside of
frame.
mouse-position
except that it returns coordinates in
units of pixels rather than units of characters.
set-mouse-position
except that x
and y are in units of pixels rather than units of
characters. These coordinates are not required to be within the
frame. If frame is not visible, this function does nothing. The return value is not significant.
When using a window system, a Lisp program can pop up a menu so that the user can choose an alternative with the mouse.
The argument position specifies where on the screen to put the menu. It can be either a mouse button event (which says to put the menu where the user actuated the button) or a list of this form:
((xoffset yoffset) window)
where xoffset and yoffset are coordinates, measured in pixels, counting from the top left corner of window's frame.
If position is t
, it means to use the
current mouse position. If position is nil
,
it means to precompute the key binding equivalents for the keymaps
specified in menu, without actually displaying or
popping up the menu.
The argument menu says what to display in the menu. It can be a keymap or a list of keymaps (see section Menu Keymaps). Alternatively, it can have the following form:
(title pane1 pane2...)
where each pane is a list of form
(title (line . item)...)
Each line should be a string, and each item should be the value to return if that line is chosen.
Usage note: Don't use x-popup-menu
to display a menu if you could do the job with a prefix key defined
with a menu keymap. If you use a menu keymap to implement a menu,
C-h c and C-h a can see the individual items
in that menu and provide help for them. If instead you implement
the menu by defining a command that calls
x-popup-menu
, the help facilities cannot know what
happens inside that command, so they cannot give any help for the
menu's items.
The menu bar mechanism, which lets you switch between submenus
by moving the mouse, cannot look within the definition of a command
to see that it calls x-popup-menu
. Therefore, if you
try to implement a submenu using x-popup-menu
, it
cannot work with the menu bar in an integrated fashion. This is why
all menu bar submenus are implemented with menu keymaps within the
parent menu, and never with x-popup-menu
. See section
The Menu Bar,
If you want a menu bar submenu to have contents that vary, you
should still use a menu keymap to implement it. To make the
contents vary, add a hook function to
menu-bar-update-hook
to update the contents of the
menu keymap as necessary.
A dialog box is a variant of a pop-up menu--it looks a little
different, it always appears in the center of a frame, and it has
just one level and one pane. The main use of dialog boxes is for
asking questions that the user can answer with "yes", "no", and a
few other alternatives. The functions y-or-n-p
and
yes-or-no-p
use dialog boxes instead of the keyboard,
when called from commands invoked by mouse clicks.
(title (string . value)...)
which looks like the list that specifies a single pane for
x-popup-menu
.
The return value is value from the chosen alternative.
An element of the list may be just a string instead of a cons
cell (string . value)
. That
makes a box that cannot be selected.
If nil
appears in the list, it separates the
left-hand items from the right-hand items; items that precede the
nil
appear on the left, and items that follow the
nil
appear on the right. If you don't include a
nil
in the list, then approximately half the items
appear on each side.
Dialog boxes always appear in the center of a frame; the
argument position specifies which frame. The possible
values are as in x-popup-menu
, but the precise
coordinates don't matter; only the frame matters.
In some configurations, Emacs cannot display a real dialog box; so instead it displays the same items in a pop-up menu in the center of the frame.
These variables specify which shape to use for the mouse pointer in various situations, when using the X Window System:
x-pointer-shape
x-sensitive-text-pointer-shape
These variables affect newly created frames. They do not normally affect existing frames; however, if you set the mouse color of a frame, that also updates its pointer shapes based on the current values of these variables. See section Window Frame Parameters.
The values you can use, to specify either of these pointer shapes, are defined in the file `lisp/term/x-win.el'. Use M-x apropos RET x-pointer RET to see a list of them.
The X server records a set of selections which permit transfer of data between application programs. The various selections are distinguished by selection types, represented in Emacs by symbols. X clients including Emacs can read or set the selection for any given type.
nil
, it means
to clear out the selection. Otherwise, data may be a
string, a symbol, an integer (or a cons of two integers or list of
two integers), an overlay, or a cons of two markers pointing to the
same buffer. An overlay or a pair of markers stands for text in the
overlay or between the markers. The argument data may also be a vector of valid non-vector selection values.
Each possible type has its own selection value, which
changes independently. The usual values of type are
PRIMARY
and SECONDARY
; these are symbols
with upper-case names, in accord with X Window System conventions.
The default is PRIMARY
.
PRIMARY
. The data-type argument specifies the form of data
conversion to use, to convert the raw data obtained from another X
client into Lisp data. Meaningful values include TEXT
,
STRING
, TARGETS
, LENGTH
,
DELETE
, FILE_NAME
,
CHARACTER_POSITION
, LINE_NUMBER
,
COLUMN_NUMBER
, OWNER_OS
,
HOST_NAME
, USER
, CLASS
,
NAME
, ATOM
, and INTEGER
.
(These are symbols with upper-case names in accord with X
conventions.) The default for data-type is
STRING
.
The X server also has a set of numbered cut buffers which can store text or other data being moved between applications. Cut buffers are considered obsolete, but Emacs supports them for the sake of X clients that still use them.
compound-text
.
The argument pattern should be a string, perhaps with wildcard characters: the `*' character matches any substring, and the `?' character matches any single character. Pattern matching of font names ignores case.
If you specify face and frame, face should be a face name (a symbol) and frame should be a frame.
The optional argument maximum sets a limit on how
many fonts to return. If this is non-nil
, then the
return value is truncated after the first maximum
matching fonts. Specifying a small value for maximum can
make this function much faster, in cases where many fonts match the
pattern.
A fontset is a list of fonts, each assigned to a range of character codes. An individual font cannot display the whole range of characters that Emacs supports, but a fontset can. Fontsets have names, just as fonts do, and you can use a fontset name in place of a font name when you specify the "font" for a frame or a face. Here is information about defining a fontset under Lisp program control.
fontpattern, [charsetname:fontname]...
Whitespace characters before and after the commas are ignored.
The first part of the string, fontpattern, should have the form of a standard X font name, except that the last two fields should be `fontset-alias'.
The new fontset has two names, one long and one short. The long
name is fontpattern in its entirety. The short name is
`fontset-alias'. You can refer to the
fontset by either name. If a fontset with the same name already
exists, an error is signaled, unless noerror is
non-nil
, in which case this function does nothing.
If optional argument style-variant-p is
non-nil
, that says to create bold, italic and
bold-italic variants of the fontset as well. These variant fontsets
do not have a short name, only a long one, which is made by
altering fontpattern to indicate the bold or italic
status.
The specification string also says which fonts to use in the fontset. See below for the details.
The construct `charset:font' specifies which font to use (in this fontset) for one particular character set. Here, charset is the name of a character set, and font is the font to use for that character set. You can use this construct any number of times in the specification string.
For the remaining character sets, those that you don't specify explicitly, Emacs chooses a font based on fontpattern: it replaces `fontset-alias' with a value that names one character set. For the ASCII character set, `fontset-alias' is replaced with `ISO8859-1'.
In addition, when several consecutive fields are wildcards, Emacs collapses them into a single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger fonts are not usable for editing, and scaling a smaller font is not useful because it is better to use the smaller font in its own size, which Emacs does.
Thus if fontpattern is this,
-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24
the font specification for ASCII characters would be this:
-*-fixed-medium-r-normal-*-24-*-ISO8859-1
and the font specification for Chinese GB2312 characters would be this:
-*-fixed-medium-r-normal-*-24-*-gb2312*-*
You may not have any Chinese font matching the above font specification. Most X distributions include only Chinese fonts that have `song ti' or `fangsong ti' in the family field. In such a case, `Fontset-n' can be specified as below:
Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\ chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*
Then, the font specifications for all but Chinese GB2312 characters have `fixed' in the family field, and the font specification for Chinese GB2312 characters has a wild card `*' in the family field.
t
if
so; otherwise, nil
. The argument frame says
which frame's display to ask about; if frame is omitted
or nil
, the selected frame is used. Note that this does not tell you whether the display you are using really supports that color. You can ask for any defined color on any kind of display, and you will get some result--that is how the X server works. Here's an approximate way to test whether your display supports the color color:
(defun x-color-supported-p (color &optional frame) (and (x-color-defined-p color frame) (or (x-display-color-p frame) (member color '("black" "white")) (and (> (x-display-planes frame) 1) (equal color "gray")))))
nil
.
(x-color-values "black") => (0 0 0) (x-color-values "white") => (65280 65280 65280) (x-color-values "red") => (65280 0 0) (x-color-values "pink") => (65280 49152 51968) (x-color-values "hungry") => nil
The color values are returned for frame's display. If
frame is omitted or nil
, the information is
returned for the selected frame's display.
x-get-resource
retrieves a resource value from the X
Windows defaults database. Resources are indexed by a combination of a key and a class. This function searches using a key of the form `instance.attribute' (where instance is the name under which Emacs was invoked), and using `Emacs.class' as the class.
The optional arguments component and subclass add to the key and the class, respectively. You must specify both of them or neither. If you specify them, the key is `instance.component.attribute', and the class is `Emacs.class.subclass'.
x-get-resource
should look up.
The default value is "Emacs"
. You can examine X
resources for application names other than "Emacs" by binding this
variable to some other string, around a call to
x-get-resource
.
See section `X Resources' in The GNU Emacs Manual.
This section describes functions you can use to get information
about the capabilities and origin of an X display that Emacs is
using. Each of these functions lets you specify the display you are
interested in: the display argument can be either a
display name, or a frame (meaning use the display that frame is
on). If you omit the display argument, or specify
nil
, that means to use the selected frame's
display.
always
, when-mapped
, or
not-useful
.
nil
if the display supports the SaveUnder
feature.
static-gray
, gray-scale
,
static-color
, pseudo-color
,
true-color
, and direct-color
.
t
if the screen can display shades of gray.
t
if the screen is a color screen.